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Magnetization dynamics below Tc of EuO and EuS?

Evidences for effects of dipolar-anisotropic fluctuations
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Abstract. Between 4.2 K and the Curie temperatures of the cubic Heisenberg ferromagnets EuS and EuO,
their homogeneous dynamic susceptibilities χzz(ω,T,H) have been investigated by means of a broad-
band reflectometer operating from 0.1 GHz to 40 GHz. For internal magnetic fields larger than the
anisotropy fields HA(T ) of both materials, their static susceptibilities χz(T,H) exhibit a 1/

√
H-divergence,

which reveals quantitatively the dominance of dipolar-anisotropic spin-wave fluctuations. χzz(ω) displays a
Lorentzian shape the damping frequency of which obeys scaling in terms of χz(T,H). The scaling function
agrees quantitatively with work by Frey and Schwabl [19] for dipolar Heisenberg ferromagnets at temper-
atures above Tc. Building upon their approach, the resonance frequency of the Lorentzian can be related
to a memory effect in the damping determined by the large value of the relaxation rate of the longitudinal
magnetization fluctuations Γ`. For EuS, this relation is substantiated directly by inelastic neutron scat-
tering. All these features reveal the hitherto uncovered importance of the dipolar anisotropic fluctuations
below Tc of ferromagnets.

PACS. 75.30.Cr Saturation moments and magnetic susceptibilities – 75.40.Cx Static properties – 75.40.Gb
Dynamic properties

1 Introduction

Above the Curie temperature, the dynamics of the ho-
mogeneous magnetization of Heisenberg ferromagnets has
been investigated experimentally as well as theoretically in
great detail and is regarded now as to be well understood.
In particular, the importance of the influence of the dipo-
lar anisotropic fluctuations on the critical dynamic be-
havior has been demonstrated for the q = 0-suceptibility
[1–13] of EuS and EuO and by neutron scattering on Fe
[13,14], EuO [15,16] and EuS [17,18]. Along with re-
cent theoretical work based on the mode coupling (MC)
approach [19,20] these results led to an almost complete
description of the important effect of the inevitable long-
range dipole-dipole interaction on the magnetization dy-
namics at large wavelengths, including the homogeneous
limit.

At very low temperatures, T � Tc, the dynamics result
from magnetization rotations while for elevated tempera-
tures below Tc, where thermal fluctuations enter, detailed
experimental investigations of the homogeneous dynamics
in model Heisenberg ferromagnets do not exist. Recently, a
clear signature of dipolar-anisotropic fluctuations has been
detected in the static susceptibility χz(T,H) of EuS [21]
not only in the classical spin-wave regime [22,23] but also
at temperatures surprisingly close to the Curie point.

? Dedicated to Professor F. Schwabl at his 60th birthday
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Here we report the first systematic investigations of the
temperature and field dependence of the dynamic suscep-
tibility χzz(ω) on single-crystalline spheroids of the cubic
ferromagnets EuS (Tc = 16.5 K) and EuO (Tc = 69.5 K)
below their Curie temperatures. Due to their strongly lo-
calized moments and low anisotropy fields, these materials
are regarded as very good realizations for Heisenberg fer-
romagnets. The large moments of the Eu2+ ions of 7µB
and their high density in the NaCl-structure pronounce
the dipole-dipole interactions and suggest to study their
effects also below Tc.

In Section 2 we describe our experimental microwave
setup for measuring the frequency, temperature and field
variation of χzz(ω;T,H) between 0.1 GHz and 40 GHz.
Results of frequency scans typical for EuS and EuO
are presented, which reveal for χzz(ω) heavily damped
Lorentzian shapes. We examine here the domain-free state
and to this end we consider finite internal magnetic fields
H = Hext − Nz ·Mz > 0, where all domain walls are ex-
pelled from the sample. In Section 3 we investigate the ef-
fects of thermal fluctuations and in particular of the dipo-
lar anisotropy on the static susceptibility. This is followed
by analyses of the shape of χzz(ω) and of the dynamic
parameters, i.e. resonance frequencies and linewidths, in
Section 4. These results are discussed in Section 5 in the
light of the MC approach of Frey and Schwabl [19,20] and
in terms of very recent results from inelastic scattering of
polarized neutrons [18,24].
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Fig. 1. Layout of the microwave reflectometer for χ(ω)-
measurements between 0.1 GHz and 40 GHz.

2 Experiment

For the measurements we used an upgraded version of a
broad-band, vectorial microwave reflectometer described
previously [25]. In this setup, sketched in Figure 1, the
sample is placed in the maximum of the microwave mag-
netic field at the shortened end of a microwave transmis-
sion line. This allows for both principal orientations of
the rf-field with respect to the static magnetic field pro-
vided by a superconducting split-coil magnet. In this work
the ‘parallel’ orientation is employed, where HRF directly
couples to magnetization fluctuations parallel to the field.

The microwave amplitude is supplied by a synthesizer
sweeper (HP8341A) feeeding a home-made coaxial trans-
mission line at frequencies between 0.1 GHz and 30 GHz.
High quality waveguides are used above 12 GHz. A coax-
ial adaptor containing a vacuum tight window couples
the sample insert to the test-set (HP8516A) of a vec-
tor network analyzer (HP8510B). This records contin-
uously the complex reflection coefficient of the sample,
R(f) = R′(f) − i R′′(f), between f = 0.1 GHz and
40 GHz. As shown in reference [25] the dynamic suscep-
tibility χ(f) = χ′(f) − i χ′′(f) can be deduced from the
normalized reflection coefficient r ≡ R/R0 where R0 de-
notes the signal at χ = 0 reached at sufficiently large
fields:

χ′(f) =
1

ηf

1− r
′2 − r

′′2

(1 + r′)2 + r
′′2
, (1)

χ′′(f) =
1

ηf

2r′′

(1 + r′)2 + r′′2
· (2)
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Fig. 2. Absorption and dispersion of (a) an EuS sphere at
T = 4.2 K for the internal field H = 1780 Oe and (b) an EuO
sphere T = 30 K for H = 767 Oe. Solid lines correspond to
single Lorentzian model, equation (3).

The filling factors η of the samples in the coaxial line
were determined by measuring χ(f) in a calibration
λ/4-cavity of same geometry and sample location oper-
ating at 1.9 GHz [3]. For the rectangular waveguide, a
λ/2-waveguide-cavity operating at 9 GHz was used. In
both assemblies the rf-amplitude across the sample was
kept constant so that the filling factors remained inde-
pendent of frequency. The calibrations were checked by
comparing the low frequency results for χ(ω) of EuS at Tc
to the data from reference [7].

The sample insert is housed by a double-walled tube
immersed in the liquid Helium bath which cools also the
superconducting magnet. By means of a temperature sen-
sor (Lake Shore Cryogenics, Cernox CX-series) and an
ohmic heater, both connected to a PID temperature con-
troller (Lake Shore Cryogenics, model DRC-91), the sam-
ple temperatures between 4.2 K and 150 K could be sta-
bilized in external magnetic fields up to 18 kOe.

As an example, Figure 2 shows two frequency scans
obtained on 3 mm crystalline spheres of EuS and EuO in
internal magnetic fields H ≡ Hext −NzMz > HA(T ) [26].
Here the coaxial transmission line was used up to 18 GHz.
As a prominent feature one realizes the change of the sign
in the dispersion signals near 12 GHz in EuS and 7 GHz
in EuO, respectively, which is accompanied by a broad
maximum in the absorption. Both features can be well
fitted by a single, heavily damped Lorentzian:

χzz(ω) = [χ−1
z (0) +

iω

Lz
−
ω2

Ω2
z

+Nz]
−1. (3)

where Nz = 1/3 provides the demagnetization correc-
tion [27]. The fits are indicated by full lines in Figure 2.
Lz(T,H) represents the kinetic coeffient associated with
the intrinsic damping and Ωz(T,H) denotes an intrinsic
resonance frequency determining the zero of the disper-
sion. These two parameters contain the essential infor-
mation on the linear magnetization dynamics and will be
discussed in Section 4.
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Fig. 3. Goldstone divergence of the static susceptibilities
χz(0)(◦2) and χz(qt )(•) of (a) EuS and (b) EuO at small
internal fields, H � Ms. Both are compared for dipolar
anisotropic (A1) and Heisenberg-type (A2) fluctuations, re-
spectively (Eq. (3)).

3 Static susceptibilities

The static susceptibilities χz(0) obtained from the fits
of χzz(ω) to equation (3) at magnetic fields HA(T ) <
H � Ms(T ) are shown in Figure 3 for temperatures
4.2 K < T ≤ Tc. In order to elucidate the predicted effect
of the spin-wave fluctuations [22,23], the susceptibility is
normalized by the thermal factor T/Tc and plotted on a
double-logarithmic scale versus the internal field weighted
by the third power of the reduced spontaneous magne-
tization, (M0 = Ms(0)). For all temperatures, the data
for both ferromagnets fall on common power laws, which
decrease with H−1/2.

This divergence of the parallel susceptibility at small
field H has been predicted at first by Holstein and Pri-
makoff [22] within the spin-wave theory for Heisenberg
ferromagnets and was confirmed thereafter by many oth-
ers (e.g. Refs. [23,28–33]). Based on general hydrodynamic
arguments for ferromagnets with Heisenberg exchange,
Prokrovsky [23] demonstrated that the anisotropic dipo-
lar interaction leaves only the correlation between the
modes perpendicular to both M and q (Goldstone-like
mode δSGSW see Fig. 4b) critical, while the correlations
between the modes in the (M,q)-plane remain finite. As
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Fig. 4. Magnetization modes classified with respect to (a) the
wave vector q above Tc and (b) to the spontaneous magneti-
zation Ms below Tc.

a consequence, the amplitude An of the parallel suscepti-
bility [21],

χswz (T,H �Ms) = An
T

Tc

(
M0

Ms

)3/2
1

H1/2
, (4)

An =
n

16π
q3
d

kB Tc

µ0M
3/2
0

, (5)

is reduced by the dipolar interaction, because the number
n of Goldstone modes is lowered from the Heisenberg value
n = 3 − 1 = 2 to the dipolar one, n = 1. Inserting the
dipolar wavenumbers qd = 0.24 Å−1 and qd = 0.15 Å−1

extracted from neutron scattering experiments on EuS [34]
and from χz(0)-data above Tc for EuO [6], the solid lines
in Figure 3 are obtained. Obviously, the dipolar-reduced
amplitudes A1 describe the data much better than the
isotropic values A2.

4 Scaling of damping and resonance
frequencies

At first, we address ourselves to the kinetic coefficient for
the damping, Lz(T,H) which increases either by lowering
the field at fixed temperatures, T < Tc, or by raising the
temperature at a low field. This socalled critical speeding
up when approaching Tc from below very much resembles
the behavior of Lz observed above Tc [6]. Therefore, it
is suggestive to examine whether the scaling behavior of
Lz, evidenced in the paramagnetic critical state [7], also
holds in the ferromagnetic phase. In Figure 5, for this
purpose, we plot the measured kinetic coefficients as a
function of the static susceptibilities for both materials. In
fact, a rather convincing scaling is obtained, which extends
down to temperatures as low as 0.25 Tc in EuS and to
0.72 Tc in EuO. We note that this scaling holds only for
internal fields larger than the anisotropy fields HA(T ) of



40 The European Physical Journal B

1010

1011

 a)

L
z(

T
,H

) 
  

(s
-1

)           T/Tc   q/qd

0.25     0

0.73     0

0.89     0

0.93  0.63[24]

0.95     0

0.97     0

1.00     0

T>Tc    0   [7]

EuS

~
LMC

z

10-1 100 101 102
109

1010

χ z(T,H)

L
z(

T
,H

) 
  

(s
-1

)

T/Tc           H ||

             [100] [111]

0.72      

0.79      

0.86            

0.94      

0.97               

0.99      

b)EuO

~
LMC

z

Fig. 5. Scaling representation of the kinetic coefficient Lz of
the damping of the homogeneous magnetization dynamics in
fields above the anisotropy fields: (a) EuS and (b) EuO. Solid
lines represent L̃z(ω = 0) calculated from equation (12).

EuO [35] and EuS [36]. Furthermore, the data of the more
anisotropic EuO fall on the same scaling function for both
orientations, H||[100] and H||[111], which, therefore, can
be considered to reflect the isotropic magnetic behavior.

It is common sense to associate scaling behavior near
Tc with the fact that the magnetic response functions scale
with the diverging correlation length ξ(T,H) of the order
parameter, Ms = Msez. Among them is the static sus-
ceptibility, χz(T,H) = (qd ξ(T,H))2 [7], which may thus
be used to explore the scaling regime. Approaching Tc
from above, the critical speeding-up of Lz results from
a reduction of the Anderson-Weiss exchange narrowing
due to the growth of the spin-correlations [37,38]. This
speeding-up saturates when the dipolar anisotropy begins
to dominate the spatial correlations between the magneti-
zation fluctuations. This socalled static dipolar crossover
has been observed directly by polarized neutron scatter-
ing [34]. In the limit of low frequencies, ω ≤ Lz/χz [6],
the dynamical crossover for the kinetic coefficient could
quantitatively be described by numerical mode coupling
(MC) results derived for unmagnetized dipolar Heisenberg
ferromagnets, i.e. for T ≥ Tc,H = 0 [19]. In Figure 5, the

predicted L̃z(ω → 0; χz(T,H)) is fitted to the data using
the values at criticality, Lz(Tc,H = 0), as the only pa-
rameters. Their numbers have been explained along with
those for several other Heisenberg ferromagnets in refer-
ence [6]. As the most interesting feature of Figure 5 we
note, that the scaling function in the ordered state agrees
excellently with L̃z(0, χz) despite the fact that this func-
tion was derived for T > Tc and for zero field. We discuss
this point in Section 5.
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Fig. 6. Scaling representation of the resonance frequency Ωz
of the homogeneous susceptibility defined in equation (2): (a)
EuS and (b) EuO. Solid curves were calculated using the MC-
result Lz(χz) (Fig. 5) and the correlation frequencies, ωc =
Ω2
z/Lz (see insets).

The scaling property of the second dynamic param-
eter, i.e. of the resonance frequency Ωz(T,H), is illus-
trated in Figure 6. At a first glance, the appearance of
a resonance in the dynamics of fluctuations δSz paral-
lel to the magnetization is puzzling, since in the homo-
geneously magnetized state a torque acting on δSz does
not exist. One rather expects a simple Debye-behavior,
χzz(ω) = [χ−1

z (T,H) + iω/L̃z + Nz]
−1. However, this

can explain the experimentally observed Lorentzian, equa-
tion (3), only if the kinetic coefficient displays the follow-
ing frequency dependence:

L̃z(ω;T,H) =
Lz(T,H)

1 + iω Lz(T,H)/Ω2
z(T,H)

· (6)

This socalled memory of the kinetic coefficient becomes
important for frequencies larger than a characteristic fre-
quency, Ω2

z/Lz ≡ ωc. A central result emerging from
this homogeneous magnetization dynamics is that ωc does
neither depend on the temperature nor on the mag-
netic field. According to the insets to Figure 6, one finds
ωc = 1.2(4) × 1011 s−1 and ωc = 1.0(3) × 1011 s−1 for
EuS and EuO, respectively. Adopting these values for
ωc and using the MC-curves L̃z(0, χz) displayed in Fig-
ure 5, it is then possible to describe the scaling functions,
Ωz(T,H) = Ωz(χz(T,H)), within the experimental error
margins for both EuS and EuO.
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5 Discussion

At the outset, we recall the exact expression for the On-
sager kinetic coefficient of the magnetization as deter-
mined e.g. by the linear response theory [20,37],

L̃z(ω) =

∞∫
0

dt(Ṡz(t)Ṡz(0))eiωt. (7)

Accordingly, the damping results from the correlation be-
tween the torques, Ṡz = (i/~)[H, Sz], acting on the to-
tal spin. In concentrated ferromagnets, the torque is gov-
erned by the dipolar interaction between the moments
[11], so that the spin-lattice interaction can be ignored,
Hs` �Hdd.

For this socalled dipolar Heisenberg ferromagnet L̃z(ω)
has been evaluated by many authors [20,37–39] within the
random phase approximation (RPA) at zero field for tem-
peratures above Tc. There, in the absence of a finite mag-
netization, the fluctuations are classified with respect to
their propagation vectors q (see Fig. 4a) into one longitu-
dinal (δS ‖ q) and two transverse (δS⊥q) modes. Within
the RPA they decouple to give

L̃MC
z (ω) = Ω2

d

∑
q

∞∫
0

dt C`(q, t)Ct (q, t)eiωt, (8)

where Ωd = (gµBS)2N/V measures the strength of the
dipolar interaction. Footing on numerous results from
neutron scattering, the correlation functions Cα(q, t) =
(Sα(q, t)Sα(q, 0)) of the transverse (α = t)[16,17,40] and
longitudinal (α = `) [18] modes are taken to decay ex-
ponentially, Cα(q, t) = Cα(q)exp(−Γα(q)t), so that one
finds [11,20]:

L̃z(ω) = Ω2
d

∑
q

C`(q)Ct (q)

Γ`(q) + Γt(q) + iω
· (9)

Near the Curie temperature, the sum is heavily weighted
by Ct due to the divergence of χt (q → 0) = (qdξ)

2,
whereas C` → 1 saturates in this limit [34]. This criti-
cality of the transverse modes leads to the slowing down
of their relaxation rates,

Γt (q→ 0, T ≥ Tc) = A q5/2γt (qξ(T )), (10)

where γt(x) is a homogeneous (scaling) function with
γt (x → ∞) → 1 [19]. On the other hand, the relaxation
rate of the noncritical longitudinal modes saturates near
Tc for q < qd:

Γ` ≡ Γ`(q < qd, T → Tc) = A q
5/2
d . (11)

The nonuniversal parameter A entering both, Γ` and Γt ,
can be expressed by Tc and by the dipolar wavenumber
qd [6,19], A ≈ γ(kBTc/µ0)1/2/qd, where γ = gµB/~ de-
notes the gyromagnetic ratio. It was shown earlier [6] for
many archetype Heisenberg ferromagnets including EuS

and EuO, that A describes the existing experimental data
for Γt (q → 0) obtained by inelastic neutron scattering
rather accurately. More recently, also the relaxation rate
of the longitudinal spin fluctuations has been measured
by inelastic scattering of polarized neutrons [18] on EuS,
and the result Γ`(q → 0, T → Tc) = 0.98(15)× 1011 s−1

was found to agree with the prediction by equation (11).
Taking all these observations into account, the sum-

mation in equation (9) leads to [11,20]

L̃MC
z (ω;χz) =

1

[1 + χ−1
z ]7/4

·
LMC
z (Tc, 0)

1 + iω/Γ`
(12)

with LMC
z (Tc, 0) ' A q

5/2
d [6]. It is now interesting to

note that this frequency variation, which should strictly
be valid only at zero magnetization, corresponds to our
experimental result, equation (6), obtained for tempera-
tures T ≤ Tc. This implies that the experimental correla-
tion frequency has to be identified with the relaxation rate
of the longitudinal fluctuations, and in fact the value for
EuS emerging from this work, ωc = 1.2(4)× 1011 s−1, ex-
cellently agrees with Γ` = 0.98(15)× 1011 s−1. Our value
for EuO, ωc = 1.0(3) × 1011 s−1, can quantitatively be
explained in terms of equations (10) and (11), which give
Γ` = Γt (qd/q)

5/2 = 1.13 × 1011 s−1, by using Γt from
neutron scattering and qd = 0.15 Å−1 [6,16]. Thus we can
conclude that the fast relaxation of the longitudinal modes
does govern the homogeneous dynamics not only above Tc
but also in the wide region below Tc examined here.

The other significant feature indicating the importance
of the longitudinal fluctuations below Tc is the scaling be-
havior of the kinetic coefficient, Lz(T,H), evidenced in
Figure 5. For both ferromagnets, the scaling functions
can be well described by the dc-limit of equation (12),

L̃z(0, χz(T,H)) = Lz(Tc, 0)/[1+χ−1
z (T,H)]7/4, which was

derived for zero magnetization, Mz = 0 [19]. Let us men-
tion that equation (12) also explains the result of a previ-
ous, preliminary study near the coexistence line of EuS [7],

where, L̃z(0, T ≤ Tc,H → 0) was found to remain con-
stant. Obviously, this arises from the divergence of χz at
the coexistence line, see Figure 5.

If a finite magnetization is present, the evaluation of
Lz from equation (7) involves modes parallel and per-
pendicular to Mz. Due to the dipolar interaction these
parallel and spin-wave modes are further split into longi-
tudinal and transverse ones. The high complexity of the
resulting problem has been realized already by Vaks et al.
[41]. Very recently, Schinz and Schwabl [42] investigated
in more detail the dipolar effects on spin-wave frequen-
cies and linewidths, however, the dynamics of the parallel
fluctuations is still waiting for a solution. Regarding our
main observations, i.e. the memory effect and the scal-
ing property of Lz, we suspect here that below Tc (i) the
damping of δSz(qt = 0) is determined primarily by the
transverse and longitudinal modes of the parallel mag-
netization, δSz(q⊥ez) and δSz(q ‖ ez), and (ii) that the
coupling of δSz(q) to the spin-waves δSSW (q) seems to be
of minor importance here. Of course, a direct proof of this
conjecture e.g. by neutron scattering would be of great
value.
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Fig. 7. Neutron scattering from the transverse (q⊥M) par-
allel magnetization fluctuations below Tc at the internal field
H = 0.7 kOe. The inset shows the results from the transverse
and longitudinal spin-wave fluctuations.

A first step in this direction has been made very re-
cently on EuS, where the dynamics of the spin-wave and
the parallel fluctuations (see Fig. 4b) has been measured
separately using inelastic scattering of polarized neutrons
[24]. Two spectra are reproduced in Figure 7 showing a
pure relaxational peak for the transverse, parallel fluctu-
ations, as opposed to the two propagating, i.e. longitudi-
nal and transverse spin-wave modes shown by the inset.
The analysis of the linewidth yields Γz(qt ) = 20(1) µeV
and the energy integration of the peak yields for the sus-
ceptibility χz(qt ) = 0.68(2) at the temperature and the
internal field given in Figure 7. Indicating the value for
the susceptibility in Figure 3a we find an excellent agree-
ment with our results for χz(qt = 0). Without having
any detailed knowledge on the q-variation of χz we can
only speculate that this finding arises from the fact that qt

is significantly smaller than the the dipolar wavenumber
qd = 0.24 Å−1, so that χz may saturate.

The evaluation of the kinetic coefficient by using these
numbers gives Lz(qt ) ≡ Γz(qt )χz(qt ) = 3.1(8)× 1010 s−1.
This result does not hit exactly the scaling curve of Fig-
ure 5a for the homogeneous kinetic coefficient. This shows
that the dynamic quantity Lz may be more sensitive
against a variation of qt in the dipolar regime q < qd
than the static susceptibility. However, the closeness of
Lz(qt = 0.69qd) to Lz(0) indicates that this effect is not
very strong.

6 Summary and conclusions

The effects of temperature and magnetic fields on the
static and dynamic susceptibilities have been investigated
in the domain free states below the Curie temperatures of
the weakly anisotropic Heisenberg ferromagnets EuS and
EuO. We have shown that the dipolar anisotropic spin-
wave fluctuations dominate the static susceptibility χz(0)
of the homogeneous magnetization not only for T � Tc
but also for temperatures very close to the Curie points. It
was exemplified for EuO that the cubic anisotropy has no

impact on χz(0) for fields exceeding the anisotropy field
HA(T ).

The dynamic susceptibilities exhibit a heavily damped
Lorentzian. This shape is related to a memory effect: a
Debye function for the damping Lz(ω) containing a field
and temperature independent correlation frequency ωc
completely describes the oscillatory behavior of χzz(ω)
below Tc. By extending the MC work of Frey and
Schwabl [19,20] for Heisenberg ferromagnets with dipolar
interaction to finite frequencies at T ≤ Tc, ωc is identi-
fied with the relaxation rate Γ` of the longitudinal fluc-
tuations of the small wavenumber (q < qd) modes paral-
lel to the magnetization Mz. The kinetic coefficients of
the damping Lz(ω → 0;T,H) scale with χz(T,H) on
master curves which are identical (i) to the scaling func-
tion previously determined above Tc of EuS and (ii) to a
prediction of the MC-work for the paramagnetic critical
regime [19,20]. These two features suggest that also be-
low Tc the anisotropic dipolar fluctuations dominate the
homogeneous magnetization dynamics and that this novel
feature calls for a more detailed explanation.

The authors thank R. Dombrowski and A. Flossdorff (both
Hamburg) for the help during the microwave measurements
and M. Baumann (Hamburg), who supplied the magnetization
data on the samples. The collaboration with P. Böni (PSI Villi-
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